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Abstract
We consider various approaches to treat the phases of a qutrit. Although it is
possible to represent qutrits in a convenient geometrical manner by resorting
to a generalization of the Poincaré sphere, we argue that the appropriate way
of dealing with this problem is through phase operators associated with the
algebra su(3). The rather unusual properties of these phases are caused by
the small dimension of the system and are explored in detail. We also
examine the positive operator-valued measures that can describe the qutrit
phase properties.

PACS numbers: 03.65.Vf, 03.65.Ta, 42.50.Dv

1. Introduction

The emerging field of quantum information, which embraces areas of futuristic technology
such as quantum computing, quantum cryptography and quantum communications, has been
built on the concepts of entanglement and qubits [1, 2]. The full appreciation of the complex
quantal properties of these two ideas has provided powerful physical resources for new schemes
that herald results that cannot be achieved classically [3].

Recently, the exploration of higher dimensional quantum systems has finally received the
attention it rightly deserves. One could think that this represents a mere digression in a hot
topic. However, qutrits have several interesting properties worth exploring [4]: the efficiency
and security of many quantum information protocols are improved using qutrits [5–7], and
larger violations of nonlocality via Bell tests are expected to occur for systems of entangled
qutrits [8, 9].

In the modern parlance of quantum information the concept of phase for a qubit (or
a qutrit) is ubiquitous. However, this notion is rather imprecise. Phases for three-level
systems have been handled by invoking fuzzy concepts such as the phase of the associated
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wavefunction [10]. Sometimes, the problem is reduced to the optimal estimation of the value
of the phase shift undergone by the qutrit [11].

When comparing phases of two states, it is usually assumed that the relative phase is
obtained from the argument of their inner product. In this perspective, the phase is considered
as a state parameter. In recent years, we have learned that this relative phase shift can be of
various origins, namely, it can be purely dynamical or purely geometrical or both. Presently,
there is an immense interest in geometric phases in quantum optics [12, 13], especially in
connection with quantum computing applications [14]. In fact, these phases are linked to
the geometry of the state space: for a qubit, this space is the coset space SU(2)/U(1), the
well-known Poincaré sphere, while for a qutrit, a geometrical picture of the corresponding
generalization to SU(3)/U(2) has been recently presented [15].

We emphasize that these notions, though well established in the classical limit, are not
easily extrapolated into the realm of the quantum world. Since the phase is a physical property,
it must, in the orthodox picture of quantum mechanics, be associated with a selfadjoint operator
or at least with a family of positive operator-valued measures (POVMs). In this spirit, phase
operators for the algebra su(2), which describes qubits, have been previously worked out
[16–19], as well as the optimal POVM for this problem [20]. The main goal of this paper
is to work out a nontrivial extension to su(3) of the results available for su(2), enabling us
to introduce phase operators for qutrits with a clear physical picture. This seems of such
fundamental importance that it is surprising that such a task was not undertaken a long time
ago. We thus trust that this will be of relevance to workers in the various experimental fields
currently under consideration for quantum computing technology and in quantum optics, in
general.

2. Poincaré sphere for a qutrit

We first briefly recall the salient features of the Poincaré sphere representation for a qubit,
with a view to preparing its generalization for a qutrit along the lines of [15]. A qubit lives
in a two-dimensional complex Hilbert space H(2) spanned by two states: |1〉 and |2〉. To get
a useful parametrization of the state space of a general qubit described by the density matrix
ρ̂, we observe that the Pauli matrices σ̂a together with the identity 1̂1 form a complete set of
linearly independent observables, and that any selfadjoint (trace class) operator can then be
written as

ρ̂ = 1
2 (1̂1 + n · σ̂). (1)

The physical condition ρ̂ � 0 holds only when |n| � 1. Hence, the state space coincides with
the Bloch ball, and the set of pure states (ρ̂2 = ρ̂) with the boundary of this ball |n| = 1,
which is the Bloch sphere S2. The general pure state

|�〉 = sin(θ/2)|1〉 + eiφ cos(θ/2)|2〉 (2)

is represented by the unit vector

n = (sin θ cos φ, sin θ sin φ, cos θ). (3)

The angle θ is obviously related to the proportion of |1〉 and |2〉 in the composition of the
state, while the parameter φ is routinely interpreted as the quantum phase associated with the
qubit and canonically conjugate to the inversion σ̂z [21]. We note in passing that diametrically
opposite points on S2 correspond to mutually orthogonal vectors in H(2).

Consider now a qutrit, living in a three-dimensional complex Hilbert space H(3) spanned
by |1〉, |2〉 and |3〉. The roles of SU(2) and the Pauli matrices are now played by the group
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SU(3) and the eight generators of the corresponding su(3) algebra. A convenient set of
Hermitian generators are the Gell-Mann matrices [22, 23] λ̂r (r = 1, . . . , 8), which obey the
commutation relations

[λ̂r , λ̂s] = 2ifrst λ̂t (4)

where, above and in the following, the summation over repeated indices applies. The structure
constants frst are elements of a completely antisymmetric tensor spelled out explicitly in [15],
for example.

A particular feature of the generators of SU(3) in the defining 3 × 3 matrix representation
is closure under anticommutation [23]

{λ̂r , λ̂s} = 4
3δrs 1̂1 + 2drst λ̂t (5)

where now drst form a totally symmetric tensor.
For the following, a vector-type notation is useful, based on the structure constants. The

f and d symbols allow us to define both antisymmetric and symmetric products by

(A ∧ B)r = frstAsBt = −(B ∧ A)r
(6)

(A � B)r =
√

3drstAsBt = +(B � A)r .

Given a density matrix ρ̂ we can expand it in terms of the unit matrix 1̂1 and the λ̂r in the
form

ρ̂ = 1
3 (1 +

√
3n · λ̂). (7)

This is the equivalent to the Bloch ball for a qutrit. For a pure state the analogous Bloch sphere
is defined by the condition

n · n = 1, n � n = n. (8)

Thus, each pure qutrit state corresponds to a unique unit vector n ∈ S7, defining the seven-
dimensional unit sphere. In addition, this vector must obey the condition n � n = n, which
places three additional constraints, thus reducing the number of real parameters required to
specify a pure state from the seven parameters needed to specify an arbitrary eight-dimensional
vector to four.

In view of our discussion for qubits, it is clear that normalization and a choice for the
arbitrary overall phase allow us to write these four parameters for any pure state as

|�〉 = sin(ξ/2) cos(θ/2)|1〉 + eiφ12 sin(ξ/2) sin(θ/2)|2〉 + eiφ13 cos(ξ/2)|3〉. (9)

Again, θ and ξ determine the magnitudes of the components of |�〉, while we can interpret φ12

as the phase of |1〉 relative to |2〉 and analogously for φ13. We can easily obtain the expressions
for n in these local coordinates.

Some interesting geometric properties of this Poincaré sphere are discussed in [4]. In
particular, it is easily seen that for two unit vectors n and n′ representing pure states

0 � arccos(n · n′) � 2π

3
(10)

so mutually orthogonal vectors in H(3) do not lead to antipodal or diametrically opposite points
on the Poincaré sphere, but to points with a maximum opening angle of 2π/3.
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3. Phase operators for a qutrit

Although there is a widespread usage of dealing with the qutrit phases as state parameters,
this is not an orthodox way of proceeding, according to the very basic principles of quantum
mechanics.

To gain further insights into this obvious although almost unnoticed point, we stress that
the complete description of a qutrit involves the nine operators

Ŝij = |i〉〈j | (11)

where |i〉 is a basis vector inH(3). The three ‘diagonal’ operators Ŝii measure level populations,
while the ‘off-diagonal’ ones Ŝij represent transitions from j to level i. One can easily check
that they satisfy

[Ŝij , Ŝkl] = δjkŜil − δil Ŝkj (12)

which are the commutation relations of the algebra u(3) [24].
Because of the trivial constraint Ŝ11 + Ŝ22 + Ŝ33 = 1̂1, only two populations can vary

independently. For this reason, we shall work with two independent traceless operators

Ŝz
12 = 1

2 (Ŝ22 − Ŝ11) Ŝz
23 = 1

2 (Ŝ33 − Ŝ22) (13)

that measure atomic inversions between the corresponding levels. In atomic systems, the
selection rules usually rule out one of the transitions and therefore the two independent
inversions are automatically fixed. For a general qutrit, these inversions can be arbitrarily
chosen.

The commuting operators Ŝz
12 and Ŝz

23 constitute a maximal Abelian subalgebra for the
qutrit (known as Cartan subalgebra). From the discussion of the previous section, we expect
Ŝz

12 and Ŝz
23 to be conjugate to the corresponding (independent) phases of the qutrit.

Note that
(
Ŝ12, Ŝ

z
12

)
and

(
Ŝ23, Ŝ

z
23

)
correspond to the qubits 1 ↔ 2 and 2 ↔ 3. However,

these two qubits are not independent, since equation (12) imposes highly nontrivial coupling
between them.

At the operator level, the equivalent to the decomposition of a complex number in terms
of modulus and phase is a polar decomposition [25]. Since Ŝ21 = Ŝ

†
12, it seems appropriate to

define [26]

Ŝ12 = R̂12 Ê12 (14)

where the ‘modulus’ is R̂12 =
√

Ŝ12Ŝ21 and Ê12 = exp(iφ̂12), φ̂12 being the Hermitian
operator representing the phase.

One can easily work out that a unitary solution of equation (14) is given, up to an overall
phase, by

Ê12 = |1〉〈2| + eiφ0 |2〉〈1| − e−iφ0 |3〉〈3| (15)

where the undefined factor eiφ0 appears due to the unitarity requirement of Ê12. The main
features of this operator are largely independent of φ0, but for the sake of concreteness, we
can make a definite choice. For example [19], for a qubit defined by a linear superposition
of the states |1〉 and |2〉, the complex conjugation of the wavefunction should reverse the sign
of φ̂12, which immediately leads to the condition eiφ0 = −1. We conclude then that a unitary
phase operator that preserves the polar decomposition of equation (14) can be represented as

Ê12 = |1〉〈2| − |2〉〈1| + |3〉〈3|. (16)

The eigenstates of φ̂12 are those of Ê12, and easily found to be∣∣φ0
12

〉 = |3〉 ∣∣φ±
12

〉 = 1√
2
(|2〉 ± i|1〉) (17)
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with the corresponding eigenvalues of φ̂12, 0 and ∓π/2, respectively. This is a remarkable
result. It shows that the eigenvectors

∣∣φ±
12

〉
look like the standard ones for a qubit. However,

the ‘spectator’ level |3〉 is an eigenstate of this operator, which introduces drastic changes. In
other words, the phase of the qubit 1 ↔ 2 ‘feels’ the state |3〉.

An analogous reasoning for the transition 2 ↔ 3 gives the corresponding operator Ê23

Ê23 = |2〉〈3| − |3〉〈2| + |1〉〈1| (18)

with eigenvectors∣∣φ0
23

〉 = |1〉 ∣∣φ±
23

〉 = 1√
2
(|3〉 ± i|2〉) (19)

and the same spectrum as before.
As for the operator E13, one must be careful, because it connects the lowest to the highest

vector. In fact, the polar decomposition in this case gives as a unitary solution

Ê13 = a|3〉〈2| − b∗|3〉〈1| + b|2〉〈2| + a∗|2〉〈1| + |1〉〈3| (20)

with the condition |a|2 + |b|2 = 1. There are also nonunitary solutions to the polar
decomposition, but they lack the interest to describe a phase observable in our context.

Note that the general solution (20) has the desirable property Ê13|3〉 = |1〉. On physical
grounds, we argue that the state |2〉 should be a ‘spectator’ for the transition 1 ↔ 3. Thus we
impose Ê13|2〉 ∝ |2〉, which is only possible if a = 0 and we have that

Ê13 = |1〉〈3| − |3〉〈1| + |2〉〈2| (21)

with eigenvectors∣∣φ0
13

〉 = |2〉 ∣∣φ±
13

〉 = 1√
2
(|3〉 ± i|1〉). (22)

With this choice we are led to

Ê12Ê23 �= Ê13 (23)

which clearly displays the quantum nature of this phase [27]. Note, in passing, that

[Ê12, R̂23] = [Ê23, R̂12] = 0 (24)

and [R̂23, R̂12] = 0, so the interference between different channels (i.e., the noncommutativity
of Ŝ12 and Ŝ23) is due to the noncommutativity of the corresponding phases.

4. Positive operator measures for the qutrit phases

The unusual behaviour exhibited by the description of qutrit phases in terms of Hermitian
operators can be considered to some extent exotic. One may think it preferable to represent
qutrit phases by using a POVM taking continuous values in a 2π interval.

We briefly recall that a POVM [28] associated with an observable φ̂ is a set of linear
operators �̂(φ) (0 � φ < 2π), depending on the continuous parameter φ and furnishing the
correct probabilities in any measurement process through the fundamental postulate that

P(φ) = Tr[ρ̂�̂(φ)]. (25)

The real valuedness, positivity and normalization of P(φ) impose

�̂†(φ) = �̂(φ) �̂(φ) � 0
∫ 2π

0
dφ �̂(φ) = 1̂1 (26)
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where the integral extends over any 2π interval of the form (φ0, φ0 + 2π), φ0 being a
fiducial or reference phase. Note that, in general, �̂(φ) are not orthogonal projectors as in the
standard von Neumann measurements described by selfadjoint operators.

From our previous discussion, it is clear that we expect some complementarity between
phases and inversions [29–31]. If we observe that

eiφ′Ŝz
12 = e−iφ′/2|1〉〈1| + eiφ′/2|2〉〈2| + |3〉〈3| (27)

and argue that phase-shift operators must be 2π periodic, we impose that any POVM
�̂(φ12, φ23) for a qutrit should satisfy

ei2φ′Ŝz
12�̂(φ12, φ23) e−i2φ′Ŝz

12 = �̂(φ12 + φ′, φ23)
(28)

ei2φ′′Ŝz
23�̂(φ12, φ23) e−i2φ′′Ŝz

23 = �̂(φ12, φ23 + φ′′).

One can work out that the general POVM fulfilling these requirements must be of the form

�̂(φ12, φ23) = 1

(2π)2
{1̂1 + [γ12 exp(i(2φ12 − φ23))|2〉〈1| + γ23 exp(i(2φ23 − φ12))|3〉〈2|

+ γ13 exp(i(φ12 + φ23))|3〉〈1| + h.c.]} (29)

where h.c. denotes Hermitian conjugate, γij � 1 are real numbers and φij is the relative phase
between states |i〉 and |j 〉. These relative phases coincide precisely with the polar part of the
realization of su(3) on the torus constructed in [27]. If we chose the γij different, say γ12 = 1
and the other two below the unity, then the expectation value of this POVM could reach the
value zero for the superposition states (|1〉 + exp(iθ)|2〉)/√2. However, for superpositions
of states |1〉 and |3〉 or |2〉 and |3〉, the expectation values of the POVM would always be
greater than zero. Since there is no physical reason to assign special relevance to one specific
superposition of the states, we assume that the POVM must be symmetric with respect to the
states, which leads to

γ ≡ γ12 = γ23 = γ13. (30)

Moreover, we make henceforth the choice γ = 1 because only for this choice can the POVM
attain the expectation value zero for some particular state.

In contrast with the result of equation (23) formulated in terms of operators, now there
are only two relevant phases in the qutrit description: the third can be inferred from the other
two, as in the classical description.

The proposed POVM provides qutrit phases where any values of φ12 and φ23 are allowed.
However, note that the probability density induced by this POVM can be written as

P(φ12, φ23) = 1

(2π)2
{1 + [ρ12 exp(i(2φ12 − φ23)) + ρ23 exp(i(2φ23 − φ12))

+ ρ13 exp(i(φ12 + φ23)) + c.c.]} (31)

where ρij = 〈i|ρ̂|j 〉 and c.c. denotes complex conjugate. Therefore, this continuous range of
variation is not effective in the sense that the values of P(φ12, φ23) at every point (φ12, φ23)

cannot be independent, and we can find relations between them irrespective of the qutrit state.
In other words, the complex parameters cij can be determined by the values of P(φ12, φ23) at
six points. Discreteness is inevitably at the heart of the qutrit phase [21].

Finally, we shall consider a remarkable example of POVM particularly suited to describe
the qutrit phase. We recall that for a single-mode quantum field, a POVM for the field phase
can be defined in terms of radial integration of quasiprobability distributions obtained using
a coherent-state representation, much in the spirit of the classical conception [33, 34]. The
natural generalization of this procedure to the qutrit problem involves the use of su(3) coherent
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states. In the appendix we summarize the essential ingredients needed for this paper. Coherent
states of a single qutrit are of the form

|α, β〉 = 1√
Cαβ

(|3〉 + α|2〉 + αβ|1〉) (32)

where α and β are complex numbers and the normalization constant is

Cαβ = 1 + |α|2(1 + |β|2). (33)

These coherent states generate a POVM over the qutrit state space via the projectors
|α, β〉〈α, β|.

As shown in the appendix, the phases of α and β are just those of 〈α, β|Ŝ32|α, β〉 and
〈α, β|Ŝ21|α, β〉, respectively, while the phase associated with 〈α, β|Ŝ31|α, β〉 is just the product
of the other two. Let us write

α = r23 eiφ23 β = r12 eiφ12 (34)

and integrate the projectors |α, β〉〈α, β| radially over r12 and r23, with respect to the measure
(see equation (A.11))

dµ = |α|2
[1 + |α|2(1 + |β|2)]3

d2α d2β. (35)

After some calculations one obtains

�̂(φ12, φ23) = 1

(2π)2

{
1̂1 +

π

96
[exp(i(2φ12 − φ23))|2〉〈1| + exp(i(2φ23 − φ12))|3〉〈2|

+ exp(i(φ12 + φ23))|3〉〈1| + h.c.]
}

(36)

which is just a specialized form of equation (29) and whose physical meaning is now clear.

5. Concluding remarks

In this paper, we have looked for possible descriptions of qutrit phases. Although it is possible
to construct an extension of the Poincaré sphere to qutrits, the orthodox way of dealing with any
observable is to represent them by selfadjoint operators. In this spirit, we have investigated
a description of qutrit phases in terms of a proper polar decomposition of its amplitudes.
Perhaps the most striking consequence of this description is that phases are discrete and do
not commute.

We have also considered alternative generalized descriptions in terms of POVMs. In these
descriptions, phases appear as parameters rather than operators. Additivity of phases follows
from the commutativity of the Cartan elements. Although these POVMs reflect some desirable
properties of the classical phase, they show an effective discreteness, even if in principle a
continuous range of variation is assumed.
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Appendix. su(3) coherent states

In this appendix, we briefly summarize the essential ingredients of the construction of coherent
states for three-level systems [35]. For concreteness, we shall consider fully symmetrical states
of N three-level systems. In the Fock representation, we denote by |n1, n2, n3〉 the state in
which there are n1 systems in level 1, n2 systems in level 2 and n3 systems in level 3. We
observe that all these states can be generated from |0, 0, N〉 by repeated application of the
usual collective operators Ŝ23 and Ŝ12 (note that they coincide with (11), introduced for one
qutrit, when N = 1) as

(Ŝ12)
n(Ŝ23)

m|0, 0, N〉 =
√

N !m!

(N − m)!

√
m!n!

(m − n)!
|n,m − n,N − m〉 (A.1)

with 0 � n � m � N . Note that this is a simple extension of the relevant formula for the
two-level case. In analogy with the atomic coherent states for su(2), we define coherent states
for qutrits as

|α, β〉 = √
Nαβ eβŜ12 eαŜ23 |0, 0, N〉 (A.2)

where α and β are complex numbers and Nαβ is a normalization constant that we shall write
as

Nαβ = 1

(Cαβ)N
(A.3)

where we have introduced the real quantity

Cαβ = 1 + |α|2(1 + |β|2). (A.4)

In the Fock basis these states can be recast as

|α, β〉 = √
Nαβ

∑
0�n�m�N

(
N

m

)1/2 (
m

n

)1/2

αmβn|n,m − n,N − m〉. (A.5)

After some calculations one gets the following mean values:

n̄3 = 〈α, β|Ŝ33|α, β〉 = N

Cαβ

n̄2 = 〈α, β|Ŝ22|α, β〉 = N

Cαβ

|α|2 (A.6)

n̄1 = 〈α, β|Ŝ11|α, β〉 = N

Cαβ

|α|2|β|2

which immediately shows that the ratios of the average population numbers are given by

n̄3 : n̄2 : n̄1 = 1 : |α|2 : |α|2|β|2. (A.7)

On the other hand, one can also compute

〈α, β|Ŝ32|α, β〉 = N

Cαβ

α

〈α, β|Ŝ21|α, β〉 = N

Cαβ

|α|2β (A.8)

〈α, β|Ŝ31|α, β〉 = N

Cαβ

αβ.
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The phases of α and β are then just those of 〈α, β|Ŝ32|α, β〉 and 〈α, β|Ŝ21|α, β〉, respectively.
Note, in passing, that the third phase associated with 〈α, β|Ŝ31|α, β〉 is just the product of the
other two, as it happens in classical physics.

The atomic coherent states with different amplitudes are not orthogonal

〈α1, β1|α2, β2〉 = [1 + α∗
1α2(1 + β∗

1 β2)]N

[1 + |α1|2(1 + |β1|2)]N/2[1 + |α2|2(1 + |β2|2)]N/2
(A.9)

but form an overcomplete set. In fact, it is easy to verify the following resolution of the
identity:

(N + 1)(N + 2)

π2

∫
dµ |α, β〉〈α, β| = 1̂1 (A.10)

where the measure dµ is

dµ = |α|2
[1 + |α|2(1 + |β|2)]3

d2α d2β. (A.11)

The above discussion pertains only to the fully symmetric subspace. Of course, it is enough
for our purposes, although is can be extended to other subspaces in a very direct way.
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